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Abstract
Wind measurements are rare in heights of interest in terms of wind turbines. Consequently, well-verified
model simulations of the wind conditions are fundamental during the planning stage of wind farms. In this
paper, a new approach is presented where data from operational wind turbines is used to verify these wind
simulations. Several issues are discussed: model wind speed has to be combined with the power curve from the
wind turbine in order to be comparable with the turbine data. Furthermore, in operational mode a turbine does
not perfectly perform at any time step. Thus, those time steps have to be identified and replaced by missing
values since a model cannot reproduce an unsual turbine operation. In addition, wind turbines are influenced
by surrounding turbines resulting in a reduction of power production at some time steps. Consequently, a wake
model is applied on the model simulation. In a next step, the edited turbine power data is compared to the
power time series resulting from a mesoscale simulation for Germany with the mesoscale model WRF. The
simulation is improved by a remodelling-method during the post-processing. This method alters the model
wind speed and particularly results in a reduced wind speed bias. Comparing these model simulation’s power
production time series to the turbine production data reveals that they correlate well with most values in the
range of 0.82 to 0.87 for an hourly temporal resolution. The relative bias for the simulations is between 10 to
25 % in terms of power. Finally, a comparison with a model verification with wind measurement data is carried
out. It is shown that the verification with data from operational wind turbines and from wind measurements
are in the same range in terms of correlations.

Keywords: mesoscale model verification, wind turbine production data, modelling of wind conditions, wind
simulation

1 Introduction1

Long-term statistical properties of wind conditions2

(wind speed and direction) as well as short-term fore-3

casts are of interest for environmental (pollutant disper-4

sion, damage by storms), recreational (sailing, gliding5

flights), and economic (electricity production by wind6

turbines) applications. In particular, the wind industry7

with its enormous increase in installed capacity world-8

wide during the last two decades and its intuitive eco-9

nomic value asks for information on the wind potential10

on a wide range of temporal and spatial scales. Atmo-11

spheric numerical models are used to estimate site spe-12

cific wind conditions (Troen, 1996) as well as regional-13

scale (Mengelkamp et al., 1997; Mengelkamp, 1999)14

to global-scale wind maps (Vaisala 3TIER, 2014).15

Verification of numerical wind simulations, however,16

still remains a challenge. Attempts were made to com-17

pare simulated wind statistics to observations at weather18

stations (Kaiser-Weiss et al., 2015) and meteorologi-19

cal towers (Drechsel et al., 2012). However, already20

Wieringa (1980, 1996) questioned the representative-21

ness of wind speed measurements at weather stations22

because of the standard height of 10 m and the strong in-23

fluence of any kind of small obstacle and roughness con-24
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ditions in the immediate surrounding on the measure- 25

ments. In addition, Lindenberg et al. (2012) showed 26

that nearly every wind speed time series at a weather 27

station can be considered inconsistent in time, mostly 28

due to the replacement of anemometers or a change 29

of the measurement location or height. Moreover, the 30

scale mismatch between a point measurement and a 31

model grid scale representative parameter remains. To- 32

day, mesoscale models seem to be most suitable for the 33

simulation of wind conditions on regional scales. With a 34

horizontal resolution of about a few kilometers numer- 35

ical considerations require the lowest vertical layer to 36

be roughly 50 m thick. The relation between the wind 37

speed at different heights depends on surface charac- 38

teristics and atmospheric stability. Any vertical extra- 39

polation from the lowest model level to the observational 40

height of 10 m implies an uncertainty. 41

Measurements at tall meteorological towers over- 42

come some of the shortcomings of near-surface mea- 43

surements. Considering 100 m being a typical height for 44

the atmospheric surface layer, the influence of surface 45

characteristics on wind speed measurements above this 46

height is reduced. Therefore, although being point mea- 47

surements, these data represent an air volume larger than 48

near-surface mesurements, since the wind field at this 49

height is more homogenous. Tall research towers pro- 50

viding multi-year consistent data sets are most appro- 51
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priate for the verification of wind simulations at single52

locations. However, since the number of tall towers for53

research purposes is rather limited, these data sets are54

not sufficient for a general picture of the uncertainty of55

a country-wide wind atlas.56

In some countries, as a consequence of the growing57

wind industry, the number of tall measurement towers58

used for commercial purposes increased during the last59

years. The height of these towers ranges between 60 m60

in former times and up to 140 m today. Although com-61

monly only in operation for 12 months, data from these62

towers would be most helpful for the verification of time63

series simulations of wind speed and direction. There is64

no official number of these towers as they are privately65

owned but from our experience as a wind consultant our66

guess for Germany is around 500, yet with limited data67

access.68

Our study will go a step further and start from the69

consideration that the number of operating wind tur-70

bines in Germany increased to more than 28,675 in 201771

(Deutsche WindGuard, 2018) distributed all over the72

country. The electricity production of wind turbines can73

be considered an indirect measure of the wind con-74

ditions. The influence of small-scale surface inhomo-75

geneity is reduced at hub heights of more than 100 m76

for modern wind turbines and the energy production77

can be considered representative for a high-resolution78

mesoscale model grid cell as rotor diameters of more79

than 120 m represent a rather large air volume due to80

their large rotor swept area. However, cutbacks are many81

in using wind turbine production data for the verifica-82

tion of wind simulations. The ability of technical devices83

to transform kinetic energy of the air into electrical en-84

ergy is limited to an efficiency of 59 % at a maximum85

according to Betz’ law (Betz, 1926). In addition, the86

cut-in wind speed of a wind turbine is at around 3 ms−1,87

rated power from which on the energy production is con-88

stant is between 12 and 13 ms−1, and cut-out speed is at89

25 ms−1. There is no information at the low and high end90

of the wind speed frequency distribution and the rela-91

tion between wind speed and energy production is non-92

linear in-between. In addition, losses due to wind farm93

wake effects and reduced operation modes for various94

reasons (noise reduction during nights, downtimes for95

animal protection or maintenance work) have to be ac-96

counted for when comparing real production data with97

simulations.98

Our intention is to discuss advantages and disad-99

vantages of using wind turbine energy production as a100

means for the verification of wind simulations and to101

show results of a preliminary comparison of numerical102

mesoscale simulations of the wind conditions over Ger-103

many with wind turbine production data.104

This paper is organised as follows. The next section105

describes the model data and how the transformation to106

power data is realized. Section 3 explains the necessary107

steps for wind turbine data in order to be useable for108

model verification purposes. In addition, the wind tur-109

bine and wind measurement data finally used are de-110

Figure 1: Outer (15× 15 km2 horizontal resolution) and inner
(3× 3 km2 horizontal resolution) WRF model domains.

scribed. The results of the verification are presented in 111

Section 4. Section 5 comprises a summary and a brief 112

outlook. 113

2 Model data 114

2.1 Mesoscale model simulation 115

The mesoscale model WRF (Weather Research & Fore- 116

casting Model version 3.7.1) (Michalakes et al., 2004; 117

WRF, 2016) is used to downscale MERRA-2 reanaly- 118

sis data (Molod et al., 2015) to the region of Germany 119

(Figure 1). A detailed description of the model is given 120

by Skamarock et al. (2008). Initial and boundary con- 121

ditions are taken from MERRA-2 (Molod et al., 2015) 122

and CFSR/CFSv2 (Saha et al., 2014) reanalysis data 123

sets. Orography data are taken from the SRTM data set 124

(Shuttle Radar Topography Mission, USGS EROS Data 125

Center (Farr et al., 2007)), which has a horizontal reso- 126

lution of 90 m and a vertical resolution of 1 m. No cor- 127

rections were performed and any uncertainties particu- 128

larly over forested areas are accepted as we are inter- 129

ested in a countrywide study and our focus is not on site- 130

specific analysis. Vegetation and roughness information 131

is extracted from the CORINE data set of the European 132

Environment Agency (Keil et al., 2010). The horizontal 133

resolution is 100 m and the latest revision is from 2006. 134

Soil temperature, soil humidity and snow cover are taken 135

from the CFSR data set with 4 soil levels. The vertical 136

structure of the model is divided into 25 hybrid levels 137

with model top at 100 hPa. Eight of the 25 vertical le- 138

vels form the lowest atmospheric layer relevant for wind 139

energy use up to 250 m height with 20 m distance up to 140

200 m height. 141

A two-way nesting strategy is realized to step 142

down from the MERRA-2 resolution of approximately 143

50× 50 km2 over Germany with a horizontal resolu- 144

tion of 15× 15 km2 in the outer model domain to the 145



Meteorol. Z. (Contrib. Atm. Sci.)
PrePub Article, 2019

A. Weiter et al.: Verification of wind simulations with data from wind turbines 3

3× 3 km2 grid of the inner domain. Every 3 hours both146

model domains are nudged towards wind (u,v), tem-147

perature and specific humidity from MERRA-2 reanaly-148

sis data. Nudging is only applied beyond the planetary149

boundary layer.150

WRF’s physics parameterization considers the Yon-151

sei University (YSU) planetary boundary layer scheme,152

the Monin-Obukhov surface layer description, the Noah153

land surface model including Mosaic 4, the RRTM154

scheme for the longwave radiation and the Dudhia pa-155

rameterization for the short-wave radiation. No cumulus156

parameterization is applied (Skamarock et al., 2008).157

The time-period 1997 to 2017 is simulated and rele-158

vant variables are stored every 10 minutes.159

2.2 Remodelling160

An optimization approach (called ‘Remodelling’ in the161

following) is applied to the wind speed time series of162

the lowest levels up to 200 m of the standard WRF sim-163

ulation. The general idea of this remodelling step is to164

use sub-grid information which is not part of the origi-165

nal WRF simulation to improve the wind speed model166

output. The remodelling is based on the comparison of167

simulated wind speed time series with observations in168

the height range of 80 to 140 m. In the subsequent first169

verification, data from 45 towers were used. During the170

remodelling process, data from 28 of them were used171

for training. The remodelling basically consists of four172

steps:173

(1) An elevation correction for wind speed is applied174

on the model data that accounts for speed-up effects over175

unresolved crests (Howard and Clark, 2007). This176

correction accounts for the height difference Δh between177

the elevation above sea level of a particular measurement178

site and the average elevation of the model grid cell179

of 3× 3 km2. It changes the original model wind speed180

output uWRF to the corrected wind speed uWRF∗ via181

uWRF∗ = uWRF · (1 + Δh · r) (2.1)

with r being a constant in units of m−1 empirically de-182

rived from simulations with a high resolution computa-183

tional fluid dynamics (CFD) code.184

(2) In a second step, both modeled uWRF∗ and ob-185

served uobs wind speed data with a resolution of 10 min186

are separated into eight wind direction sectors to account187

for various surface characteristics within these sectors.188

A linear regression analysis uobs = m ·uWRF∗+ b follows189

for simulated and observed wind speed providing regres-190

sion coefficients for each measurement site and 8 wind191

direction sectors, respectively.192

(3) There are now 16 regression coefficients for each193

of the 28 measurement sites (offset and slope of the194

regression line for each of 8 wind direction sectors).195

A multiple linear regression analysis is now performed196

separately for slope and offset parameters taking into197

account sub-grid information on orography (x1) (height198

Figure 2: Bias of simulated wind speed in comparison to wind
speeds measurements from 45 met masts (100 m height) be-
fore (blue) and after (red) the remodelling process. The black dots
indicate the wind speed measurements used in the remodelling.

of grid cell) and height gradient (x2), latitude (x3) and 199

surface roughness (x4) 200

m′ = c0 + c1 · x1 + c2 · x2 + c3 · x3 + c4 · x4 (2.2)

and similar for b′. The goal of this step is the calculation 201

of global slope-parameters (ci) for any type of sub-grid 202

information (xi) from the training data. 203

(4) With the global parameter derived from the 28 204

training met masts scaling factors are calculated for the 205

wind speed at each model grid cell taking into account 206

the respective sub-grid information. The scaling factors 207

are applied for each wind direction sector and result in a 208

corrected simulated wind data set. 209

As a result of the remodelling process the bias of 210

the mean wind speed at all 45 met masts (Figure 2) 211

is reduced. Before the remodelling process the model 212

showed a positive bias (model winds were too strong) 213

for all onshore met masts of up to 30 % and a negative 214

bias of about 5 % for offshore conditions. After the re- 215

modelling process the bias is between −10 % and +10 % 216

for onshore masts and almost zero for the offshore sites. 217

The verification data set is not totally independent from 218

the data used for the remodelling as the 28 towers used 219

for the remodelling process are among the 45 shown in 220

Figure 2. This seems to be justified as first, the simulated 221

data are corrected by global scaling factors based on the 222

analysis of all 28 towers and second, Figure 2 does not 223

reveal any difference in model skill considering masts 224

used in the remodelling and those, which are not. 225

2.3 Making simulated wind speed data 226

comparable to wind turbine output 227

Instead of using wind speed measurements for the ver- 228

ification we follow the idea of using data from opera- 229

tional wind turbines. More than 28,000 turbines dis- 230

tributed all over Germany were in operation in 2017 231

(Deutsche WindGuard, 2018). Hub heights mean- 232

while reach more than 150 m which reduces the influ- 233

ence of surface characteristics on the power production. 234

With rotor diameters of more than 150 m the power out- 235

put cannot be considered a point measurement but rather 236

represents an air volume passing through a plane of al- 237

most 20,000 m2. 238
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Figure 3: Power curve of a typical 3,000 kW wind turbine.

Opposed to these advantages are major shortcom-239

ings. Power output is connected to wind speed via240

E =

uc∑

uj=uin

P(uj) · f (uj) · 8760 (2.3)

where E [kWh] is power production in a year’s time241

(8760 hours), P(uj) [kW] the power at wind speed242

uj [ms−1] and f (uj) the wind speed frequency distri-243

bution. uin and uc are cut-in speed and cut-out speed,244

respectively. From the power curve (Figure 3) it is ob-245

vious that the power output does not comprise any in-246

formation on the wind conditions below cut-in speed247

(the wind speed at which a turbine starts operating, usu-248

ally around 3 to 4 ms−1) and above cut-out speed (the249

wind speed at which a turbine stops operation, usually250

at around 25 ms−1). From rated wind speed (the wind251

speed at which a turbine reaches its maximum (rated)252

power, often between 11 and 13 ms−1) to cut-out speed253

there is only bulk information as the turbine keeps its254

power output at a constant level. With the power of the255

undisturbed wind flow P0 = 1
2ρFu3 (ρ is air density and256

F the rotor swept area) and the power coefficient of the257

turbine cp, the turbine’s power is258

P = cp · P0 (2.4)

with a maximum value of 0.59 for cp according to Betz’259

law. Because of the non-linearity between wind speed260

and power output the verification is indeed for the vari-261

able wind power rather than for wind speed. However,262

since the model simulation verified here is mainly used263

for the estimation of wind turbine electricity production,264

it seems reasonable to compare the electricity produc-265

tion rather than wind speed. Equation 2.4 also indicates266

that only a part of the wind power is transformed into267

electrical power.268

Another complicating factor regarding this transfor-269

mation is the fact that the kinetic energy of the air270

flow depends on air density and consequently, the power271

curve of a wind turbine depends on air density as well.272

This issue can be overcome by either using a density273

specific power curve or by correcting the wind speed to274

standard density ρ0 = 1.225 kg m−3 via 275

uρ0 = u

(
ρ

ρ0

) 1
3

(2.5)

which is applied to the simulated wind speed time series. 276

Air density is calculated from model variables pressure 277

and temperature via the barometric formula and ideal 278

gas law. The uncertainty of the modeled air density 279

is part of the overall uncertainty of the power output 280

simulation. 281

In this paper, the technical transformation from wind 282

speed to power is accounted for by combining the 283

density-corrected model wind speed time series at hub 284

height every 10-minute time step with the measured 285

power curve of the respective wind turbine. Thus, the 286

verification is performed on simulated model based 287

power output and real power output from operating tur- 288

bines. Due to the dependence on the 3rd power of the 289

wind speed, the comparison of power is more sensitive 290

to any uncertainty than a comparison of the wind speed 291

itself. From our experience a factor of 2.5 seems realistic 292

for the transformation of the uncertainty in wind speed 293

to the uncertainty in electricity production. 294

However, this transformation results in the turbine 295

yield without any losses, i.e. in this first step, it is as- 296

sumed that the turbine operates in its optimal technical 297

mode and is not influenced by any wake effects from 298

neighbouring turbines. These assumptions, however, are 299

hardly given as most turbines are part of a wind farm 300

and operate under mode restrictions and external inter- 301

ferences. Individual restrictions and not foreseeable fail- 302

ures cannot be accounted for a priori by the simulations 303

but these are detected by the analysis of operational data 304

described in Section 3. Wake effects are considered by 305

applying a simple wake model that only accounts for 306

the most general processes and does not treat the time- 307

variable influence of wind shear, stratification and turbu- 308

lence. 309

The wake loss for a particular wind turbine is cal- 310

culated at any time step of 10 min and is applied to the 311

wind speed time series before it is combined with the 312

respective power curve. Wake effects crucially depend 313

on wind direction which could be taken from the tur- 314

bine orientation. But this process would mix simulated 315

and operational data and the accuracy would depend on 316

the often imprecise turbine orientation to the north. Con- 317

sequently, wind direction for wake effect calculation is 318

taken from WRF simulations. 319

The wake model is based on the equation for cluster 320

efficiency by Katic et al. (1986) and reduces the wind 321

speed allocated to each respective turbine location: 322

δu = u0(1 −
√

1 − ct)

(
D0

D0 + 2kw s01

)2 Aov

A1
(2.6)

δu is the effective wind speed deficit at turbine 1 caused 323

by turbine 0 (Figure 4) which faces wind speed u0. The 324

thrust coefficient ct describes the influence of a wind 325
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Figure 4: Schematic of the wake effect. The red pattern indicates
the area influenced by turbine 0, the blue pattern shows the rotor
area (A1) of turbine 1. Aov indicates the overlapping area. Adapted
from DTU Wind Energy.

turbine on the flow field and is provided by the manu-326

facturer. D0 represents the rotor diameter of turbine 0,327

s01 the horizontal distance between both turbines, and328

the wake decay constant kw describes how fast the wake329

decays and how strong it expands over a certain dis-330

tance. kw is considered to depend on surface roughness331

only and ranges from 0.04 for water surfaces to 0.1332

for forested areas and cities. Time-varying thermally in-333

duced turbulence and any other time-varying influence334

are neglected here and since data from time periods of335

one year and longer is considered, the time-varying in-336

fluence should be averaged out. Also the geometry of337

the wind turbines is important as depending on the rotor338

diameter, hub height, distance, and wind direction only339

a partial overlap of the rotor swept area may happen.340

The percentage of the rotor area affected by the wake341

is calculated from the geometry of the turbines, the dis-342

tance and wind direction every 10-min time step. If a343

turbine is affected by the wake of several turbines si-344

multaneously, the overall wake effect is calculated as345

the square root of the individual wake effects squared346

following Katic et al. (1986). This simple wake model347

is compared with the integrated wake model of the com-348

mercially available Meteodyn Computational Fluid Dy-349

namics model (Meteodyn, 2012). The difference in350

wind speed reduction for a 6-turbine wind farm is less351

than 10 % (wake effect by Meteodyn 3.9 %, by our wake352

model 4.3 %) on average and in power less than 4 %353

(Meteodyn 9.8 %, our wake model 10.2 %) on average.354

Given the general uncertainty in wind farm wake mod-355

elling and in comparing operational and simulated tur-356

bine power data this difference is acceptable.357

3 Observational data358

3.1 Electricity production by operational359

wind turbines360

The general idea to use data from wind turbines for361

mesoscale model verification results from the fact that362

wind measurements are quite rare in particular at larger363

heights with reduced influence of surface characteristics.364

Furthermore, the wind industry is interested in power365

output of wind turbines rather than wind speed.366

SCADA (Supervisory Control and Data Acquisi- 367

tion) data sets from operational wind turbines com- 368

prise a large number of operational parameters of each 369

wind turbine. Wind speed measured by an anemometer 370

mounted on the nacelle behind the rotor is also provided 371

by the data sets. However, this anemometer is strongly 372

influenced by turbulence generated by the rotor blades 373

and also experiences a wind speed deficit since the ro- 374

tor is extracting energy from the flow. Consequently, this 375

wind speed data have little resemblence to the wind con- 376

ditions. These data meant for turbine control is also post- 377

processed by the turbine manufacturer and not provided 378

as raw data. Thus, the wind speed data from the nacelle 379

anemometer is not used for verification purposes. This 380

paper focuses on turbine power output. Nevertheless, the 381

wind speed data are useful during the filtering process of 382

the power output described in the following. 383

We aim at using the electricity production of an op- 384

erating wind turbine for mesoscale model verification. 385

A wind turbine hardly operates in an optimal mode but 386

is affected by technical losses e.g. shut down for main- 387

tenance work and electrical grid losses as well as in- 388

tentionally reduced operation during certain times be- 389

cause of regulatory restrictions for noise reduction and 390

animal protection (commonly bats and birds). Conse- 391

quently, turbine power data have to be filtered very pre- 392

cisely in order to obtain a data set that only includes val- 393

ues the mesoscale model is able to reproduce. The fil- 394

tering process is based on a detailed analysis of SCADA 395

data, which are typically stored with a 10 min time step. 396

All time steps indicating an error by the turbine itself 397

are removed and additional incorrect data are filtered 398

out identified using a wind speed vs. power diagram 399

drawn from operational data. At this point wind speed 400

data from the nacelle is used after being transformed 401

by a transfer function provided by the turbine manufac- 402

turer. Although not exact, these data are acceptable for 403

filtering power data. Filtering removes all values that are 404

basically off the triple standard deviation marked by the 405

purple lines in Fig. 5. The filtering process adds a certain 406

amount of missing values to the production data set. In 407

order to realize a consistent statistical analysis the cor- 408

responding data in the modeled time series are marked 409

as missing values as well. 410

3.2 Wind farm data used for verification 411

Production data from 50 turbines in 12 wind farms are 412

used for verification purposes (Table 1, access to data 413

was given for a selection of turbines only in some wind 414

farms). These data are averaged to a temporal resolu- 415

tion of 10 min. The wind farms are more or less arbitrar- 416

ily distributed within the model domain and represent 417

complex and simple surface characteristics. In order to 418

extract the most appropriate time series for comparison 419

with observational data the nearest neighbor method is 420

applied simply using the model grid point closest to the 421

turbine site. A bilinear interpolation using the four clos- 422

est grid points and a weighted average showed similar 423
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Table 1: Wind farms used for the verification.

Wind farm Turbine Type No. of turbines Period Hub height [m] Orography Land use

A Enercon E82 2 11/2011–10/2016 138 Flat Mixed Farmland
B Nordex N117 5 01/2015–12/2016 120 Flat Mixed Farmland
C GE 1.5sl 2 01/2012–12/2012 100 Flat Mixed Farmland
D Enercon E82 2 01/2015–12/2016 108 Flat Mixed Farmland
E Vestas V112 6 01/2013–10/2016 94 Flat Mixed Farmland
F Nordex N117 6 10/2015–10/2016 141 Flat Forest and Villages
G Enercon E82, E101 2 01/2013–12/2016 98, 135 Flat Trees and Farmland
H Enercon E82 2 12/2014–09/2016 85, 98 Flat Trees and Farmland
J Vestas V112 5 03/2014–09/2016 140 Complex Forest and Villages
K GE 2.5 6 11/2015–12/2016 139 Complex Trees and Farmland
L Enercon E101, E126 11 03/2013–02/2016 135 Complex Forest and Villages
M Vestas V90 1 09/2015–12/2016 105 Complex Trees and Farmland

Figure 5: Power curve from operational data for filtering. Black
(red) dots indicate valid (invalid) data seperated by blue lines.

skill but is not superior. In the vertical, wind speed is lin-424

early interpolated onto hub height between model levels.425

Linear interpolation is preferred over the more complex426

logarithmic interpolation method since the difference of427

both methods is negligible at heights around 100 m.428

3.3 Wind measurement data429

It is not the intention of this paper to focus on wind430

measurements at meteorological towers. These data are431

only used to compare the model verification results of432

wind turbine data, which are presented in the following433

section, with verification results from a common verifi-434

cation method (e.g. model verification with wind mea-435

surements). In total, 46 wind speed measurements from436

towers and LiDARs providing averages of 10 min are437

used, all of them including at least one year of mea-438

surement. Measurement heights from 80 to 160 m are439

selected since this is the range of the hub heights of the440

wind turbines providing the data.441

4 Results442

This paper intents to demonstrate the idea of using data443

from operating wind turbines for the verification of wind444

Figure 6: Energy production time series of an operational wind
turbine with 3.1 MW rated power (red) from wind farm J and the
corresponding simulated electricity production (black). (a) shows
hourly data for the period 22 to 29 December 2014 and (b) for the
period 24 to 31 May 2015.

simulations. When comparing production data from op- 445

erating wind turbines with model simulations, the higher 446

uncertainty has to be considered in contrast to a compar- 447

ison of wind speed. 448

Hourly-averaged time series (from six 10 min values) 449

for the energy production from an operating wind tur- 450

bine and its simulated counterpart are shown in Figure 6 451

for a typical high wind speed period (winter months in 452

northern Europe, Figure 6a) and for a typical low wind 453

speed period (summer months in northern Europe, Fig- 454

ure 6b). During the high wind speed period, the simu- 455

lated output often reaches rated power of 3.1 MW while 456

the maximum output of the real operating turbine is al- 457

ways lower than rated power. Wind farm wake effects 458

and/or technical reasons may account for this differ- 459

ence. There are short periods with larger differences be- 460

tween simulated and real power output but in general 461
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Figure 7: (a) Spearman’s correlation coefficient (1 h) beetween sim-
ulated and measured power from wind turbines and (b) relative bias
of the simulated power. For both statistical parameters, the wind farm
average is indicated by the red dot. Black lines mark the range be-
tween the maximum and the minimum of a wind farm. Note that the
vertical bars occur due to different hub heights within one wind farm.
Since wind speed and power are not normally distributed, Spear-
man’s rank correlation coefficient, which is a distribution-free statis-
tic, is preferred over the more common Pearson correlation coeffi-
cient, which is not.

the hourly temporal variability matches well with a cor-462

relation coefficient of 0.91. The statement also holds for463

the low wind speed period which, however, shows larger464

differences at first glance. The correlation coefficient of465

the summer period is 0.84.466

For all analysed turbines the correlation for hourly467

averages ranges between 0.79 and 0.89 (Figure 7a) with468

the majority between 0.82 and 0.87. From our experi-469

ence of comparing wind speed time series from several470

simulation models with observations, correlation coef-471

ficients in this range for hourly data are reasonable. In472

addition, there is a slight positive trend towards higher473

correlations with increasing height. The larger the verti-474

cal distance to the ground, the more the influence of the475

surface decreases. Since micro-scale surface roughness476

changes are underrepresented in the model simulation,477

model skill generally increases with height and results478

in the observed increase of correlation with height.479

The relative bias (Figure 7b) ranges between 10 %480

and 25 % for the bulk of the data. In terms of wind481

speed this would mean a bias of 4 % to 10 % for the an-482

nual mean. We have found a general overestimation of483

power output by model simulations despite the fact that484

the remodelling process has minimized the uncertainty485

in wind speed simulations with a positive and negative486

bias close to zero (Figure 2). We can only speculate487

whether turbulence or the vertical wind speed profile or488

other effects in the transformation from wind speed to489

Figure 8: Red dots illustrate the average correlation coefficients
of a wind farm, which were shown as wind farm average in Fig-
ure 7a. Blue dots indicate Spearman’s correlation coeffiecients be-
tween simulated and measured wind speed from wind measurement
towers and LiDARs. In total, 46 wind speed measurements were
used. Many of them provide several measurement heights.

power output are reason for the effect of overestimation. 490

A more detailed analysis and a discussion with techni- 491

cians is needed on this issue. The absolute value of the 492

bias is acceptable. Our experience from a large number 493

of site specific energy production assessments shows un- 494

certainties in the range of 10 % for flat terrain to 20 % 495

for complex terrain. A countrywide wind- or production- 496

atlas may not replace site-specific evaluations but the un- 497

certainty may come close. 498

The data sample yet is too small for a more de- 499

tailed interpretation. However, a simple comparison 500

with model verification results from wind speed data 501

was carried out. Figure 8 shows correlation coefficients 502

between the same WRF model simulation as used be- 503

fore and wind speed data from 46 measurement sites. 504

Furthermore, the correlation coefficients from the oper- 505

ating wind turbines from Figure 7a are included as well. 506

The comparison demonstrates that results for both types 507

of verification, with wind speed and with electricity pro- 508

duction data, are in the same range. This is at least one 509

indicator that the quality of wind turbine data may be 510

high enough in order to be used for model verification. 511

An analogous investigation of the bias is not mean- 512

ingful due to the higher uncertainty of electricity pro- 513

duction data in contrast to wind speed data (enhanced 514

by a factor of approx. 2.5). This issue is not valid for the 515

correlations. 516

5 Conclusion and outlook 517

This paper aims at bringing up the idea and describ- 518

ing a first attempt to use production data from operat- 519

ing wind turbines for the verification of wind field sim- 520

ulations. We used a remodelled WRF simulation with 521

a horizontal resolution of 3× 3 km2 and a temporal res- 522

olution of 10 min. We suggested the following steps to 523

make SCADA data from operating wind turbines usable 524

for the verification of model simulations: 525
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a) Filter SCADA data for unplausible values.526

b) Extract the corresponding model time series and in-527

terpolate to hub height of the respective wind turbine.528

c) Apply a (simple) wake model on the model wind529

speed time series that accounts for wake loss due to530

other wind turbines.531

d) Apply a density correction for wind speed in order532

to account for the dependency of power curves on air533

density.534

e) Combine the resulting model wind speed time series535

at every time step (10 min) with the corresponding536

measured power curve in order to get a time series of537

simulated production data.538

f) Finally compare the time series from step a) with the539

time series from step e) in order to verify the model540

simulation.541

The approach was applied to 50 turbines in 12 wind542

farms. An extract of the time series of an exemplary543

wind turbine showed that for both, a summer and a win-544

ter period, the hourly temporal variability matches well545

with correlation coefficients of 0.91 and 0.84, respec-546

tively. Furthermore, it was demonstrated that correlation547

coefficients from 12 wind farms are in the same range548

as coefficients from 46 wind speed measurement sites549

(Figure 8). In a last step, it was shown that almost all550

simulated production data is positively biased. We can551

only speculate whether this results from the transforma-552

tion of wind speed to power output or arises due to tur-553

bulence or flow inclination. Other possible reasons are554

a poorly simulated vertical wind profile or the fact that555

a wind turbine is not oriented perfectly perpendicular to556

the flow field at any time. This issue is subject for further557

investigations.558

However, the reason the model simulation is calcu-559

lated for has to be kept in mind. It is mainly used to esti-560

mate the power production of wind turbines for the next561

20 years. Thus, the idea seems reasonable to use power562

data of turbines that are already in operation for model563

verification.564

We have highlighted drawbacks, challenges, and565

methods of using wind turbine production data for the566

verification of wind field simulations with yet a limited567

set of data. A sophisticated analysis of SCADA data is568

necessary in order to accept the turbine production data569

as a reliable means for the wind conditions and a com-570

mon understanding of wind turbine operation and meso-571

scale numerical modelling is mandatory. However, the572

number of wind turbines and their large hub height and573

rotor diameter are advantageous compared to standard574

weather station wind measurements and may make the575

effort worthwhile.576

Acknowledgements577

This paper is based on data provided by wind farm own-578

ers. Furthermore, the study was partly supported by N-579

Bank Niedersachsen in the framework of the VERIMA580

project. Special thanks go to DTU Wind Energy for pro- 581

viding us their figure. The final form of this paper also 582

benifited from the helpful comments and suggestions of 583

the anonymous reviewers. 584

References 585

Betz, A., 1926: Wind-Energie und ihre Ausnutzung durch 586

Windmühlen. – Vandenhoeck & Ruprecht, Göttingen. 587

Deutsche WindGuard, 2018: Status des Windenergieaus- 588

baus an Land in Deutschland. – Available online: https:// 589

www.windguard.de/windenergie-statistik-jahr-2017.html? 590

(accessed on October 16, 2018). 591

Drechsel, S., G.J. Mayr, J.W. Messner, R. Stauffer, 2012: 592

Wind speeds at heights crucial for wind energy: Measurements 593

and verification of forecasts. – J. Appl. Meteor. Climatol. 51, 594

1602–1617, DOI:10.1175/JAMC-D-11-0247.1. 595

Farr, T.G., P.A. Rosen, E. Caro, R. Crippen, R. Duren, 596

S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, 597

L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, 598

M. Werner, M. Oskin, D. Burbank, D.E. Alsdorf, 2007: 599

The shuttle radar topography mission. – Rev. Geophys. 45, 600

published online, DOI:10.1029/2005RG000183. 601

Howard, T., P. Clark, 2007: Correction and downscaling of 602

NWP wind speed forecasts. – Meteor. Appl. 14, 105–116, 603

DOI:10.1002/met.12. 604

Kaiser-Weiss, A.K., F. Kaspar, V. Heene, M. Borsche, 605

D.G.H. Tan, P. Poli, A. Obregon, H. Gregow, 2015: Com- 606

parison of regional and global reanalysis near-surface winds 607

with station observations over Germany. – Adv. Sci. Res. 12, 608

187–198, DOI:10.5194/asr-12-187-2015. 609

Katic, I., J. Højstrup, N.O. Jensen, 1986: A Simple Model for 610

Cluster Efficiency. European Wind Energy Association. 611

Keil, M., M. Bock, T. Esch, A. Metz, S. Nieland, 612

A. Pfitzner, 2010: CORINE Land Cover Aktualisierung 613

2006 für Deutschland. Abschlussbericht zu den F+E Vorhaben 614

UBA FKZ 3707 12 200 und FKZ 3708 12 200. 615

Lindenberg, J., H.T. Mengelkamp, G. Rosenhagen, 2012: 616

Representativity of near surface wind measurements from 617

coastal stations at the German Bight. – Meteorol. Z. 21, 618

99–106, DOI:10.1127/0941-2948/2012/0131. 619

Mengelkamp, H.T., 1999: Wind Climate Simulation over Com- 620

plex Terrain and Wind Turbine Energy Output Estima- 621

tion. – Theor. Appl. Climatol. 63, 129–139, DOI:10.1007/ 622

s007040050098. 623

Mengelkamp, H.T., H. Kapitza, U. Pflüger, 1997: 624

Statistical-dynamical downscaling of wind climatolo- 625

gies. – J. Wind Eng. Ind. Aerodyn. 67–68, 449–457, DOI: 626

10.1016/S0167-6105(97)00093-7. 627

Meteodyn, 2012: Technical note -meteodyn WT. – Technical 628

report. 629

Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, 630

W. Skamarock, W. Wang, 2004: The Weather Reseach and 631

Forecast Model: Software Architecture and Performance. – 632

In: Use of High Performance Computing in Meteorology, 633

156–168, DOI:10.1142/9789812701831_0012. 634

Molod, A., L. Takacs, M. Suarez, J. Bacmeister, 2015: 635

Development of the GEOS-5 atmospheric general circula- 636

tion model: Evolution from MERRA to MERRA2. – Geosci. 637

Model Dev. 8, 1339–1356, DOI:10.5194/gmd-8-1339-2015. 638

Saha, S., S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, 639

D. Behringer, Y.T. Hou, H.Y. Chuang, M. Iredell, M. Ek, 640

J. Meng, R. Yang, M.P. Mendez, H. Van Den Dool, 641

Q. Zhang, W. Wang, M. Chen, E. Becker, 2014: The NCEP 642

climate forecast system version 2. – J. Clim. 27, 2185–2208, 643

DOI:10.1175/JCLI-D-12-00823.1. 644

https://www.windguard.de/windenergie-statistik-jahr-2017.html
https://www.windguard.de/windenergie-statistik-jahr-2017.html
http://dx.doi.org/10.1175/JAMC-D-11-0247.1
http://dx.doi.org/10.1029/2005RG000183
http://dx.doi.org/10.1002/met.12
http://dx.doi.org/10.5194/asr-12-187-2015
http://dx.doi.org/10.1127/0941-2948/2012/0131
http://dx.doi.org/10.1007/s007040050098
http://dx.doi.org/10.1016/S0167-6105(97)00093-7
http://dx.doi.org/10.1142/9789812701831_0012
http://dx.doi.org/10.5194/gmd-8-1339-2015
http://dx.doi.org/10.1175/JCLI-D-12-00823.1


Meteorol. Z. (Contrib. Atm. Sci.)
PrePub Article, 2019

A. Weiter et al.: Verification of wind simulations with data from wind turbines 9

Skamarock, W.C., J.B. Klemp, J. Dudhia, D.O. Gill,645

D.M. Barker, M.G. Duda, X.Y. Huang, W. Wang,646

J.G. Powers, 2008: A Description of the WRF Vesion 3. Tech-647

nical report, National Center for Atmospheric Research Boul-648

der, Colorado, USA.649

Troen, I., 1996: The WAsP code. – In: D. Lalas and C.F. Ratto650

(Eds.), Model. Atmos. flow fields, World Scientific, 435–452.651

Vaisala 3TIER, 2014: global wind map available online: https://652

www.vaisala.com/en/lp/free-wind-and-solar-resource-maps653

(accessed on October 16, 2018).654

Wieringa, J., 1980: Representativeness of Wind Observations 655

at Airports. – Bull. Am. Meteorol. Soc. 61, 962–971, DOI: 656

10.1175/1520-0477(1980)061<0962:ROWOAA>2.0.CO;2. 657

Wieringa, J., 1996: Does representative wind information 658

exist?. – J. Wind Eng. Ind. Aerodyn. 65, 1–12, DOI: 659

10.1016/S0167-6105(97)00017-2. 660

WRF, 2016: User’s Guides for the Advanced Research WRF 661

(ARW) Modeling System, Version 3. 662

https://www.vaisala.com/en/lp/free-wind-and-solar-resource-maps
https://www.vaisala.com/en/lp/free-wind-and-solar-resource-maps
http://dx.doi.org/10.1175/1520-0477(1980)061%3C0962:ROWOAA%3E2.0.CO;2
http://dx.doi.org/10.1016/S0167-6105(97)00017-2

